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1. Introduction

Analytical solutions of steady incompressible po-

tential flow played a key role in the early development

of fluid mechanics. It is the same for the heat con-

duction. However, the governing equations of unsteady

viscous flow are nonlinear, hence, it is difficult to ob-

tain analytical solutions of such flow. According to the

knowledge of the authors, no new explicit analytical

solution of unsteady viscous flow with heat transfer has

been found in the open literature for many years. In

order to fill in the gaps in the field of unsteady viscous

fluid mechanics and heat transfer, it is meaningful in

theory to find out some new ways for analytical solu-

tions, which may be useful to check the accuracy,

convergence and effectiveness of various numerical

computation methods. For example, several analytical

solutions which can simulate the 3-D potential flow in

turbomachine cascades were given by the first author

[1]. These solutions have been used successfully by

some numerical calculation scientists to check their

computational methods and computer codes [1–4]. In

addition, the authors recently presented some explicit

analytical solutions of unsteady compressible flow and

heat transfer [5–10]. Several new explicit analytical

solutions of unsteady viscous flow with heat transfer

are given in this paper to serve as the benchmark so-

lutions for numerical calculations. The derivation pro-

cedure in this paper is mainly based on the method of

separation variables with addition applied by the au-

thors [7–9]. This method is to separate an unknown

function f ðx; yÞ with assumption f ¼ X ðxÞ þ Y ðyÞ in-
stead of f ¼ X ðxÞ � Y ðyÞ, its correctness for a given

analytical solution, can be proven easily by substituting

it into the governing equations.

2. Governing equations

The governing equations for constant kinematic vis-

cosity and thermal diffusivity, unsteady 2-D incom-

pressible laminar flow with heat transfer can be

presented as follows (neglecting gravity, radiation and

internal heat source) [11]:
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With boundary layer assumption, the governing equa-

tions can be simplified as:
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3. Solutions for flow between two parallel porous plates

moving with different velocities

An algebraically explicit analytical solution of the

governing equation set (1a)–(1d) of constant coefficient

unsteady 2-D incompressible laminar flow with heat

transfer can be derived mainly with the method of sep-

arating variables with addition as follows.

We assume that:

u ¼ f ðxÞ þ gðyÞ þ dðtÞ; ð3Þ

m ¼ hðxÞ þ jðyÞ þ bðtÞ; ð4Þ

p=q ¼ X ðxÞ þ Y ðyÞ þ T ðyÞ: ð5Þ

Then, the following relation can be derived from gov-

erning equations (1a) with separation of variables:

f 0ðxÞ ¼ C9 ¼ �j0ðyÞ, i.e.

f ðxÞ ¼ C9xþ C10 ð6Þ

and

jðyÞ ¼ C8 � C9y: ð7Þ

Substituting Eqs. (3)–(7) into governing equations (1b)

and (1c), it is obtained:

d 0ðtÞ þ C9½C9xþ C10 þ gðyÞ þ dðtÞ	 þ g0ðyÞ

 ½hðxÞ þ C8 � C9y þ bðtÞ	 ¼ tg00ðyÞ � X 0ðxÞ; ð8Þ

b0ðtÞ þ h0ðxÞ½C9xþ C10 þ gðyÞ þ dðtÞ	
�C9½hðxÞ þ C8 � C9y þ bðtÞ	 ¼ th00ðxÞ � Y 0ðyÞ ð9Þ

Rearranging Eq. (8), it is deduced that

C9dðtÞ þ d 0ðtÞ þ g0ðyÞbðtÞ þ C2
9xþ C9C10 þ X 0ðxÞ

þ g0ðyÞhðxÞ ¼ �C9gðyÞ þ ðC9y � C8Þg0ðyÞ þ tg00ðyÞ:
ð10Þ

It can be understood from Eq. (10) that the separa-

tion of variables is able to be accomplished further when:

d 0ðtÞ ¼ �X 0ðxÞ ¼ Const ¼ C0;
hðxÞ ¼ Const ¼ C1 � C8 � C11;

bðtÞ ¼ Const ¼ C11;

C9 ¼ 0

ð11Þ

or dðtÞ ¼ 0 ¼ bðtÞ

hðxÞ ¼ Const ¼ C1;
Y 0ðxÞ ¼ �C4;

C8 ¼ 0 ¼ C9:
ð12Þ

Case 1. Substituting Eq. (11) into Eqs. (8) and (9), it is

easy to have

gðyÞ ¼ C2eC1y=t þ C3; ð13Þ

Y ðyÞ ¼ 0 ð14Þ

and

T ðtÞ ¼ arbitrary function of t: ð15Þ

Combining Eqs. (3)–(7), (11) and (13)–(15), one of the

solutions of the dynamic relation (1b) and (1c) can be

given as follows:

u ¼ C2eC1y=t þ C0t þ C3; ð16aÞ

v ¼ C1; ð16bÞ

p=q ¼ p0=q � C0xþ T ðtÞ: ð16cÞ

For the energy equation (1d), assume that:

h ¼ X1ðxÞ þ Y1ðyÞ þ T1ðtÞ and X1ðxÞ ¼ C4xþ C5;

then we are able to derive the explicit analytical solution

of h with the same procedure as mentioned above. The
final result will be

h ¼ C2C4t
C2
1ða=t � 1Þ e

C1y=t � C2
2t

2Cpð2a� tÞ e
2C1y=t

þ C5a
C1

eC1y=a � ðC3 þ C7ÞC4
C1

y

þ C4 x
�

þ C7t �
C0
2
t2
�
þ C6: ð16dÞ

Nomenclature

a thermal diffusivity

C constant

Cp specific heat

p pressure

t time

u velocity component in x direction

m velocity component in y direction

x abscissa

y coordinate

h temperature

t kinematic

viscosity

q density

Subscripts

0; 1; 2; 3; . . . different constants

1 free stream
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The physical description of this solution for steady

velocity case (C0 ¼ 0;C7 ¼ 0 and T ðtÞ ¼ 0) is given in

Fig. 1. There are two infinite porous plates parallel to x

abscissa moving along the abscissa direction with dif-

ferent speeds which are given by Eq. (16a). The flow field

between the porous plates is described by Eqs. (16a)–

(16d). The velocity of fluid flow, u, is only a function of y

and is given by Eq. (16a) also (it is assumed in Fig. 1 that

the constants C1;C2 and C3 are all positives). When fluid
is injected from the lower porous plate into the flow field

between two porous plates with a uniform constant ve-

locity component in y direction v ¼ C1, and ejected to
the upper porous plate with same velocity, v, the velocity

component in y direction in the flow field would be

constant, C1, too. The temperature varies along the x

direction with linear relation and mainly varies along y

direction and its variation curve is somewhat similar to

the u curve shown in Fig. 1. Heat transfers from upper

plate to the flow between two plates as well as from the

flow to the lower plate. The boundary conditions can be

obtained with Eq. (16d).

For the unsteady velocity case, besides the velocity

component in x direction described previously, both two

porous plates and the fluid between the plates accelerate

in x direction with acceleration C0; but the velocity

component in y direction is still constant: v ¼ C1. The

pressure changes along x direction with a constant

negative pressure gradient C0q to maintain the acceler-

ation. The temperature variation is mathematically 3-D

hðt; x; yÞ. Actually T ðtÞ is an arbitrary function and it

does not influence the kinematic and temperature con-

dition of the flow field.

The expression of absolute coordinates streamlines in

a fixed time can be obtained by integrating dy=dx ¼ v=u
as follows:

x ¼ C2t
C2
1

eC1y=t þ C0t þ C3
C1

y þ C8: ð17Þ

When the flow is steady (C0 ¼ 0), the streamlines in

the absolute coordinates are shown in Fig. 2.

Case 2. Another algebraically explicit analytical so-

lution can be derived similarly with Eq. (12) as

follows:

u ¼ C2e
C1y=m þ C4

C1

y þ C3; ð18aÞ

m ¼ C1; ð18bÞ

p=q ¼ p0=q � C4xþ T ðtÞ; ð18cÞ

h ¼ C2t2ðC5 � 2C4=CpÞ
C2
1ða� tÞ eC1y=t

� C2
2t

2Cpð2a� tÞ e
2C1y=t þ C8e

C1y=a � C4C5

2C2
1

y2

� C3C5
C1

�
þ C6
C1

þ aC4C5
C3
1

� C2
4t

C3
1Cp

�
y

þ C5xþ C6t þ C7: ð18dÞ

This solution is very similar to that expressed by Eqs.

(16a)–(16d). The main exception is that the velocity

component, u, is steady now in this solution. In addi-

tion, the temperature function is a little bit more

complicated. Then, some physical descriptions of pre-

vious solution, as described by Figs. 1 and 2 can be

used for this solution also; the only main difference is

that the curves of uðyÞ in Fig. 1 and streamline curves in
Fig. 2 will be more inclined when all constants Ci are

positive.

Although the solutions expressed by Eqs. (16a)–(16d)

and Eqs. (18a)–(18d) are very similar, they are different

solutions and cannot be derived from each other.

4. Extended Couette flow

A very simple linear velocity and temperature varia-

tion solution of Eqs. (1a)–(1d) can be deduced as:

u ¼ C4t þ C1ðx� yÞ þ C2; ð19aÞFig. 1. The flow condition of steady case of Eqs. (16a)–(16d).

Fig. 2. The steamline of steady case of Eqs. (16a)–(16d).
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v ¼ C4t þ C1ðx� yÞ þ C3; ð19bÞ

p=q ¼ ½C1ðC3 � C2Þ � C4	ðxþ yÞ þ C5 þ T ðtÞ; ð19cÞ

h ¼ ðC3
�

� C2ÞC6 þ
4t
Cp

C2
1

�
t þ C6x� C6y þ C7; ð19dÞ

where T ðtÞ is an arbitrary function of time.
The constant C3 in Eqs. (19a)–(19d) has to be un-

equal to C2, otherwise u � v and then it is an unsteady
flow with uniform velocity distribution. Considering the

Eqs. (19a)–(19c), this solution is actually an Euler flow

solution to satisfy the boundary conditions demanded

by viscous laminar flow.

It is able to satisfy the demand by turning the coor-

dinates by 45�, and then Eqs. (19a)–(19d) becomes:

u ¼ C4t þ C1y þ C2; ð20aÞ

v ¼ C3; ð20bÞ

p=q ¼ C5 � ðC1C3 þ C4Þxþ T ðtÞ; ð20cÞ

h ¼ C3C6

�
þ t
Cp

C2
1

�
t � C6y þ C7: ð20dÞ

In order to explain the physical condition of Eqs. (20a)–

(20d), we begin with the simplest case of Eqs. (20a)–

(20d) with C2 ¼ 0; C3 ¼ 0; C4 ¼ 0 and T ðtÞ ¼ 0

u ¼ C1y; ð21aÞ

v ¼ 0; ð21bÞ

p=q ¼ C5; ð21cÞ

h ¼ t
Cp

C2
1 t � C6y þ C7: ð21dÞ

It is a standard simple Couette flow between two

parallel solid plates. The first term in Eq. (21d) rep-

resents the temperature increase due to dissipation; the

second term represents constant heat transfer across

the channel. The flow is driven by the moving plate

and having no need of pressure drop in the flow

direction.

When C3 ¼ 0 only, Eqs. (20a)–(20d) become:

u ¼ C4t þ C1y þ C2; ð22aÞ

v ¼ 0; ð22bÞ

p=q ¼ C5 � C4xþ T ðtÞ; ð22cÞ

h ¼ t
Cp

C2
1 t � C6y þ C7: ð22dÞ

This is an extended Couette flow, the boundary solid

plates of Couette flow accelerate with an acceleration C4.
The velocity distribution is still linear across the flow.

The second term of Eq. (22c) represents the pressure

drop for accelerating the flow.

When C3 6¼ 0 (Eqs. (20a)–(20d)), it represents the

extended Couette flow with fluid injection and ejection

through the porous boundary plates. The pressure drop

increases due to existence of cross-velocity v ¼ C3. The
temperature increase with time is higher due to the

cross-velocity v ¼ C3 carries some heat (internal energy)
into the flow.

5. Degenerative solution describing boundary layer suction

The solution Eqs. (16a)–(16d) can become a steady

boundary layer suction solution of governing equations

(2a)–(2c) when the constants in Eqs. (16a)–(16d) satisfy

the following conditions: C0 ¼ 0; C1 ¼ �C0
1; C2 ¼ �t=

ðC0
1C

0
2Þ; C3 ¼ t=ðC0

1C
0
2Þ; T ðtÞ ¼ 0; C4 ¼ 0; C5 ¼ �1=C0

3;
C6 ¼ h1.

Neglecting the superscript ‘prime’ in the new case,

and assuming all constants are positive, Eqs. (16a)–(16d)

can be rewritten as follows:

u ¼ t
C1C2

ð1� e�C1y=tÞ; ð23aÞ

v ¼ �C1; ð23bÞ

h ¼ h1 � a
C1C3

e�C1y=a

� t3

2C2
1C

2
2Cpð2a� tÞ e

�2C1y=t: ð23cÞ

It is exactly the boundary layer suction solution [11].

6. Summary

Some new explicit analytical solutions of unsteady 2-

D laminar flow with heat transfer and flow injection and

ejection through the boundary porous plates are given.

According to the knowledge of the authors, no such

analytical solutions have been published in the open

literature. These solutions are valuable to the theory of

viscous flow and heat transfer, especially to the com-

putational fluid dynamics and computational heat

transfer as the benchmark solutions to check the nu-

merical solutions and to develop the numerical compu-

tation approaches such as the differencing schemes, grid

generation methods and so forth.

In addition, the analytical solution to steady

boundary layer with suction can be derived as a special

case of the abovementioned solutions.
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